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ABSTRACT

The nested grid is used in a barotropic free surface model. Two grids are nested; one is a coarse mesh grid
that covers a large region and the other a fine mesh grid set in a limited area inside the larger region. The
interaction between the two grids is one-directional; the boundary condition for the smaller domain is taken
from the solutions of the larger domain. The two major problems are how to select appropriate boundary
settings for the limited area fine mesh grid and to evaluate how quickly the boundary error grows and invades
the inner domain. Two methods of boundary setting are proposed; one is to specify a set of well-posed
“physical” boundary conditions as well as to provide the “computational’’ boundary conditions by using
“upwind”’ extrapolation and ‘“pseudo-characteristic’” extrapolation methods. The other is to specify all
variables at all boundaries as they are taken from the solutions of the larger area coarse mesh grid and to
apply “boundary smoothing’ in order to suppress the computational modes. Tests indicate that the solutions
for the nested fine mesh appear satisfactory with both methods up to 6.5 days. The semi-implicit difference
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scheme proves to be particularly efficient for the nested grid calculation.

1. Introduction

The numerical simulation of the medium- (1000-100
km) and meso-scale (100-10 km) phenomena of the
atmosphere such as frontal waves, hurricanes, cloud
clusters, squall lines, and frontal zones requires a grid
with a very small mesh size, say 5 km to 50 km. Because
of the limitation of the computing capacity, it is ex-
tremely difficult, if not impossible, to fill the entire
globe or even one hemisphere homogeneously with such
a fine mesh. A reasonable way to handle this type of
problem is perhaps to apply a limited area model with
a fine grid resolution to the region of concern. However,
the omission of the effect of the evolution outside the
limited domain distorts the overall solution inside the
domain rather qucikly.

In order to overcome or at least alleviate this diffi-
culty a “nested grid” or “nested mesh” system is being
considered, and in fact, simple versions of the model
have already been worked out by several people. The
system consists of a limited fine mesh area embedded
within a larger domain of coarse mesh. Multiple meshes
are sometimes used stepwise so as to reduce the grid
size less suddenly and are called the “telescopic mesh.”

One of the most crucial problems in the nesting of
meshes is how to connect the solutions from the various
meshes. In general, two approaches have been pro-
posed. The first approach allows full interaction of the
solutions between meshes (Birchfield, 1960; Matsuno,
1966; Koss, 1971; Harrison and Elsberry, 1972; Mathur,
1972; Ookochi, 1972; Jones, 1973; Price and MacPher-
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son, 1973; and Phillips and Shukla, 1973). In this sys-
tem, the exchanges of momentum and energy between
meshes are thoroughly considered. It is interesting to
note, however, that most of the successful models in this
category (except that of Price and MacPherson, 1973)
are related to the hurricane problem, whose environ-
mental domain has a rather uniform and calm flow field.
Matsuno (1966) and Browning et al. (1973) found that
wave motions in two unequal meshes have different
phase speeds due to the truncation error, and, as a
consequence, numerical trouble usually develops.

The other approach allows effect in only one direc-
tion, that is from the outer mesh to the inner mesh, and
not vice versa. In other words, the solution for the entire
domain is calculated with the coarse mesh grid, and
then the solution thus obtained is used to specify the
boundary conditions of the limited domain for the fine
mesh grid, where the specified boundary conditions
vary with time. Let us call it the “one-directional nested
grid method” (Howcroft, 1966; Hill, 1968; Wang and
Halpern, 1970; Shapiro and O’Brien, 1970; Bengtsson
and Moen, 1971; Asselin, 1972; Williamson, 1973;
Elvius and Sundstrém, 1973; and Davies, 1973). In
this system, not only the larger scale motion such as
planetary scale waves but also the synoptic scale motion
such as cyclone or anticyclone systems which move
outside the domain must be taken care of through the
temporally varying boundary conditions. The local
atmospheric phenomena that are produced by the fine-
structured topography, the land-sea contrast, the low-
level jet, the moisture tongue, or the ensembled cumulus
convection are treated inside the small domain. There
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is a disadvantage with this approach, i.e., circulations
that may be developed or enhanced by changes in the
LFM and whose effects may reach the CM outside
cannot be handled by using this approach. Therefore,
in such a situation, a larger LFM area may be needed
so that the boundary stays out of the region where these
effects are strong.

Thus each approach has merit as well as demerit. If,
~ for example, one is interested in the solution in the whole
domain, the first approach is the only way. But, if one
is concerned only with the fine scale solution inside the
small domain, both the first and the second approaches
are usable. However, the second approach appears
advantageous from the standpoint of being able to
obtain a stable numerical solution easily. Furthermore,
the latter approach requires less computer storage than
the first approach, where the coarse mesh and the
limited-area fine mesh calculations have to be carried
out simultaneously. It is the second approach that we
shall adopt here. In the present study, our concern is
to develop the nested grid technique itself, so- we shall
use a simple atmospheric model—a barotropic free
surface model—and the two mesh system, where the
ratio of grid sizes is 2 to 1 in this particular case.

We shall use explicit schemes of both leap-frog and
Euler-backward methods and a semi-implicit scheme.
Both leap-frog, explicit and semi-implicit schemes are
faster in speed than the Euler-backward explicit scheme
and are therefore attractive. The Euler-backward
explicit scheme, however, is capable of handling noise
and is therefore expected to be useful for the nested
grid problem for which some noise from the mesh inter-
face is unavoidable.

2. Governing equations

The equations for a two-dimensional free surface
model are written as,

3 a 9 g
—u—l—m(u——u-{—v—u) = fo—m—®, (1A)
at dx  ay e

a / 9 d d

—v+m< —v—{—v—v): — fu—m—a, (1B)
ot dx  dy Ay

g d/ u 9/ v
_q>+m2[—(q>—)+—<<1>—)]=o (10)
ot dx\ m/ 9dy\ m

where # and v are the velocity components in x and y
directions, ® is the geopotential height, m is the map
scale factor, i.e., m=2/(1+sinb), where @ is the latitude,
and f is defined as follows:

a1 a 1y .
f'=f+m2(v———u——>,
dxm Odym

where f is the Coriolis parameter.
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To solve this set of equations, the equations are first
approximated by finite difference equations, using the
grid system shown in Fig. 1, where A is the mesh size.
The variables are specified in the “staggered” grid; i.e.,
#, v, and ¢ are defined at different locations (Williams,
1969). This kind of grid (i.e., a staggered grid) system
seems rather convenient, if not necessary, in order to
apply the “semi-implicit scheme” which will be de-
scribed later. '

Let us first define the following basic finite difference
operators, i.e.,

—ZT

Q =3(Qira+Qizy),
Q:c = (Qi+% - Qi—%))
(@) =3[Q0+an+Q(—~ar)],

—~2x

Q =3Qir1+0:i),

and their compound operators,

—Y

0" =@,
Qaz= (QZ)x; etc.

where () is an arbitrary variable, 7 is the index of the
grid in « coordinate and At is the time increment.

In what follows, we will use two schemes for numeri-
cal time integration; one is the “explicit” scheme and
the other is the “semi-implicit” scheme, where the latter
is employed for the purpose of speeding up the cal-
culation. )

a. The explicit scheme

The Egs. (1A), (1B), and (1C) are approximated by
finite difference equations as

F16. 1. Locations of «, v, and ¢ on the staggered grid.
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where ® is divided into two, for future purposes, i.e.,
&, the mean geopotential height which is constant with
space and time, and ¢==®—®,, the deviation from the
mean height. The nonlinear term is treated the same
way as in the generalized Arakawa scheme, which was
proposed by Grammeltvedt? (1969). The scheme is
further modified to include the map scale factor .
Thus the term C is written as

2 At_z —_ _2:;»—-2
CVu)=——m [{2un+un u}
3A
3ottt @)}/ (m )

430 sy g}/ (m )],
and
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28,
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where V2 is a discrete Laplacian, i.e., V2Q=Q..1+Qyy.
As seen in these expressions, the spatial differencing
is fourth order for # in % and v in y, whereas the original
differential equations are first order. This means that
four boundary conditions are required for both # in
# and v in vy, one of which is “physical” and the other
three are “computational” boundary conditions. To
provide some of the computational boundary condi-
tions, a second order difference equation based on cen-
tral difference is used next to the x (or ¥) boundaries
for u (or v) equation. Thus each provides two conditions.

2 Grammeltvedt (1969) asserted that this scheme guarantees
not only the kinetic energy conservation but also the enstrophy
conservation for the non-divergent component of flow. It appears
that the enstrophy conservation is not exact, but this scheme
seems to provide a fairly stable calculation, though it is somewhat
complicated.
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The other computational as well as the physical
boundary conditions will be discussed in Section 4.

Although in Egs. (24), (2B), and (2C), the “leap-
frog” method is shown for time differencing, we have
also employed the “Euler-backward” method (Mat-
suno, 1966; Kurihara, 1965). If we represent the former
by

w((+A)—u(t—A)=F (1),

then the latter would be written as

wr—u()=3F (1),
w(t+A) —u () =3F*

where F* is calculated from the intermediate solutions
for ¥, v*, and ¢™.

b. The semi-implicit scheme

The semi-implicit scheme, written by Renfrew (1971), -
is based on the method of Robert (1969) (see also
Kwizak and Robert, 1971; and McPherson, 1971), in
which the implicit treatment is applied only to the
gravity wave components, not to the nonlinear terms.
The semi-implicit scheme avoids the complications of
iteration characteristic of a fully implicit scheme.
According to this scheme, the implicit treatment is
applied to the terms of the spatial gradient of geopoten-
tial height in the equations of motion and to the term
of the two-dimensional flow divergence that is mul-
tiplied by the mean geopotential height in the con-
tinuity equation. Specifically, in Egs. (2A4), (2B), and
(2C), we make the following modifications, i.e.,

20, (1) = b= (t+A) ¢ (1—AD),
26, (1) = ¢, (1A +¢, (t— A1),
and
28, (u/m )at(o/m )]
— B (U (+A)Fu(t—A)/m )a
+ ((H-A)Fo(—A/m ), ].

Inserting these expression into (24), (2B), and (2C),
using the central difference for the time derivatives,
and manipulating the resulting equations, one derives

Al__,
(u)F—m ($z)=r1. (3A)
A
Al_,
@)+-—m ()=, (3B)
A
Al e L
<¢)+Zm2<1>o[(<u>/m ot ((0)/m )y ]=rs, (3C)
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F1c. 2. Large area coarse mesh and limited-area fine mesh
(LFM), which is located in the lower middle part of the large
area, i.e., I from 11 to 30 and J from 1 to 20.

where

ri=—3C(V,)+Alfo +ult—AL),
re= —3C(V,0)—Atfu +o(t—AL),

Al ~z —z —y —v
= _Zm2[<”¢ /m )t (vp /m ), I+ (t—AD),

and C is the same as in the explicit scheme. In. Egs.
(3A), (3B), and (3C), the unknown variables are (u),
(v), and {(¢). In order to solve this set of simultaneous
equations, we eliminate (%) and (v) from these equation
in favor of {¢) and obtain, '

ALT?
<¢>—[X] AL Bk @wd=rs . @)

where

A — —y
f4=fa—ztm2‘l’0[:(”1/'m )at ("2/"%)1/]-

This is a Helmholtz equation in (¢}, and 74 is the forcing
function, which is known at the time £.

To solve the Helmholtz equation numerically, a
number of methods are available. The DRM (the
Dimension Reduction Method) (Ogura and Charney,
1961; Hockney, 1965 ; Ogura, 1969) is the most superior
in speed on a rectangular grid system but is not usable
for an irregular domain. The ADI method (Alternating
Direction Implicit) .(Peaceman and Rachford, 1955;
Birkhoff ef al., 1962) is very fast and relatively easy to
handle even for an irregular domain. The SOR method
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(Successive Over-Relaxation) (see Fox, 1962, for
example) is the simplest in treatment and is relatively
fast. According to our experience, ADI is roughly 2
to 3 times faster than SOR for the two-dimensional
20 X 20 grid and this ratio increases as the grid dimen-
sions increase (Miyakoda, 1960). Due to the above con-
sideration, we use the ADI method in our calculation.

After solving for (¢), the final results for the three
variables are obtained from

Al_,
u(t+At)=~—2zm (pa)+2r—u(t—A1),  (5A)

Al
v(t-i-N):—ZXm () +2r:—v(t—At), (5B)

P (1A =2(p)—¢ (1 —AL).
3. Mesh system

(50

The system of nested grids used here consists of two
grids. In both grids, the Cartesian coordinates on a
stereographic projection map are used. The large area
is a square (for simplicity) which covers one entire
hemisphere and parts of the other hemisphere which
are included in the four corner regions. Two grid resolu-
tions, a coarse mesh and a fine mesh, are used for the
large domain, so that we have a large domain coarse
mesh (CM), and a large domain fine mesh (FM). For
the large domain coarse mesh, »=239 is used, whereas
for the large domain fine mesh, »=77 is used, where »
is the dimension of the square array of equal grid size
A on the projection map. The grid sizes for these two
meshes are in the ratio of 2 to 1 and correspond to
about 540 km and 270 km in the middle latitude. The
total number of gripdoints in the »=39 grid, for ex-
ample, are 39X 39, 40X39, and 39X40 for the fields of
the geopotential height, ¢, and the velocity components,
# and v, respectively.

For the limited area, the same fine mesh but »=39
dimension is used, which is referred to as the limited-
area fine mesh (LFM). The size of the limited area is
one quarter of the large domain, and the location is
chosen in the lower middle part of the large domain
(Fig. 2). Therefore, the south boundary of the small
domain coincides with a boundary of the large domain.
The other boundaries of this small domain are located
in regions of active disturbances, so it is expected that
a critical and fair test can be made for this nesting of
meshes. The dynamical models for the limited domain
are identical to those for the larger domain in regards
to the total number of gridpoints and physics.

4. Boundary conditions

We have to consider two types of boundary settings,
i.e., one for the large domain and the other for the small
domain. The larger domain has the usual boundary con-
ditions, whereas boundary conditions of the small
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domain are special and are our main concern in this
paper.

Concerning the large domain, we assumed that it is
closed for the momentum flux and the boundary has a
no-shear slip condition. The small domain is, on the
other hand, open and fluxes are allowed to pass through
the border lines. Boundary conditions for a limited
domain were discussed previously by Charney (1962).
He concluded that an appropriate set of boundary con-
ditions for the balanced barotropic equations is to
specify the normal velocity component at all boundaries
and the potential vorticity at inflow boundaries, and
that this set of conditions is necessary and sufficient.
Asselin (1972), on the other hand, used a slightly differ-
ent set of boundary conditions: the normal velocity
component is specified at all boundaries and the abso-
lute vorticity at inflow boundaries. He applied these
conditions for the nested grid calculation, and obtained
successfully stable solutions for the small domain.

We here propose a new set of boundary conditions
the normal velocity component is specified ot all boundaries
and the tangential component ot the inflow boundaries.
This set of conditions is supposed to be applied to
differential equations. There is, however, a problem
when it is applied to difference equations. As Chen
(1971) discussed previously, it is often the case that
the order of spatial difference in a difference equation
is increased compared with the order of derivative in
the original differential equations, and in this case the
system of equations requires not only “physical”
boundary conditions but also “‘computational” bound-
ary conditions. The latter conditions or the extraneous
conditions should normally be provided by the governing
equations or equations derived from them. In other words,
the computational boundary values should be obtained
by extrapolation from the solution inside with the
governing equations.

In order to extrapolate the values at the incoming as
well as the outgoing boundaries, the theory of char-
acteristics can be utilized. For the one-dimensional
case, Chen (1973) showed how to apply the ‘“charac-
teristic extrapolation.” In a two-dimensional case,
three-dimensional (including the time coordinate)
characteristics, called the “Monge cones,” (see, for
example, Garabedian, 1964) are obtained. A Monge
cone consists of a family of characteristic generators
which travel in different directions, so it cannot be
used to write a one-sided difference equation for the
purpose of boundary value extrapolations. For this rea-
son ‘“pseudo-characteristics,” derived in the Appen-
dix, are used. Thus a set of well-posed boundary condi-
tions will be formulated as in the following. The newly
proposed set of physical boundary conditions, which
was described in the previous paragraph, is used as the
base, and the computational boundary conditions are

3 While we were preparing the final draft of this manuscript,
a paper by Elvius and Sundstrém (1973) just came out in which
they also used the same (physical) boundary conditions.
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obtained by extrapolation using the “pseudo-character-
istic” or the advection equation. This set of boundary
conditions provides one of the nesting methods which
will be referred to as Set (5) later.

The following method proposed by Chen (1973) will
be referred to as Set (4). In order to explain this method,
let us consider the following set of boundary conditions:
all variables are taken from the solutions of the larger
domain and are specified at all boundaries of the smaller
domain. It is known that this set of boundary conditions
is overspecified. However, our case is special; the values
from the large domain solutions are supposedly very
close to satisfying the difference equations of the smaller’
domain, if the physics included in both models are the
same. In other words, the boundary values in the set
mentioned above are almost compatible among them-
selves under the limited domain model. Chen (1973)
asserted that in this special case the over-specification
may be allowed to a certain extent, when “boundary
smoothing” is used.* The boundary smoothing is applied
only to the grid points next to the boundary. The func-
tion of local boundary smoothing is to link together
different modes of computational solutions, so that
computational modes are suppressed whereas the
physical modes are not much modified. The merit of
this boundary setting is that it does not depend on the
particular kind of governing equations, i.e., no knowl-
edge of any set of well-posed boundary conditions is
needed. It is applicable to either hyperbolic or elliptic
type equations.

Let us next explain the other sets of boundary con-
ditions which will be tested. The first two sets men-
tioned below, i.e., Set (1) and Set (2), (they were also
studied by both Platzman, 1954, and Nitta, 1962, for
the one-dimensional advection equation) are not suit-
able for nested grids, but they are used here for compari-
son. Any useful nested grid should give better solutions
than those obtained with these sets of boundary condi-
tions. Set (3) is the Dirichlet condition, where the solu-
tions from the large area coarse mesh grid are specified
at the boundaries of the limited area. This is the
simplest method and is, therefore, attractive, but as
was mentioned earlier, the set is an over-specification.

Set (1): Fixed boundary values
All variables, #, v and ¢, at all boundaries are
kept constant for all time.

Set (2): The Neumann condition
Derivatives normal to the boundaries for all
variables %, v and ¢ are set equal to zero at all
boundaries. For example, at the west boundary,
it is specified that u,,;=u.,; where 1 and 2 are
the grid index for the x direction and 7 is the
grid index for the y direction.

4 A number of people have proposed something similar. They
use smoothing over several grid layers instead of only one in our
case next to the boundary. The main difference between their
methods and ours is that theirs is a theoretical justification for our
method.
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EXPL
At = 5min.

IMPL.
At = 30min.

30DAYS

Fi16. 3. Height contour lines at day 30 with the Explicit Scheme
(EXPL) and the Semi-Implicit Scheme (IMPL). The unit of
contours is 10 m.

Set (3): The Dirichlet condition

All variables, #, v and ¢, are provided by the
solutions from the large area coarse mesh grid
at all boundary points, therefore, the boundary
values vary with time as the large area solutions
evolve. Linear interpolations in time and space
are used whenever necessary. This is an over-
specification.

Set (4) :The Dirichlet conditions with local boundary
smoothing
In addition to the Dirichlet conditions specified
in Set (3), local boundary smoothing is applied
to all variables at the gridpoints next to the
boundaries. For example, the smoothing al-
gorithm for # at the west boundary is

a2, j(smoothed) = Jus, ;-3 (g j-+us,5).

Note that the smoothing is applied in the direc-
tion normal to the boundary inside the small
domain. '

Set (5): Well-posed conditions

The normal velocity component at all bound-
ary points and the tangential component at the
inflow boundary points are specified. In addi-
tion, the tangential velocity component at the
outflow boundary points is extrapolated by the
“upwind method” using (1A) or (1B) (see
Chen, 1973), and the geopotential height ¢ at
boundary points everywhere is extrapolated by
the “pseudo-characteristic method” using (P1)
or (P2) in the Appendix.

Sets (4) and (5) are the sets of conditions that we
think best. Our opinion is based on the earlier discussion
and also on our experimental results as described later.

5. Tests

It is noted that in the Euler-backward method, in
which the advance to a new time level involves two
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steps, the boundary values must be set at both steps.
Further, Chen (1971) found that the values for the two
steps must be identical in order to suppress the com-
putational modes created by the use of a two-step
scheme. Therefore, the boundary conditions of the first
step are specified as described above in this section and
the boundary values of the second step at the same time-
level are assigned the same values as in the first step.

For the explicit scheme, a CM calculation is first
carried out, LFM calculations using boundary condi-
tions Set (1) to Set (5) are then performed. For the
semi-implicit scheme, a CM calculation is carried out,
then a LFM calculation using Set (4)® is performed.
When the grid discrepancy is introduced, error starts .
to grow at the boundary and propagates towards the
interior. It is our objective to test the boundary condi-
tions to see whether reasonable solutions can be obtained
for a certain length of time, and also to see how quickly
the error propagates inside the small domain.

In order to evaluate quantitatively the amount of
error in the nested grid solution, we compute a “refer-
ence solution” by carrying out the FM calculation of
the explicit scheme. The solutions obtained in the
nested grid calculations of the explicit scheme are com-
pared with this reference solution. (No FM calculation
of the semi-implicit scheme is done because of the
computer storage limitation.) Real data for the 500-mb
geopotential height treated with an initialization rou-
tine was employed as the initial condition, The initial
condition for LFM uses the same value in the limited

area. That for CM uses the same value at points com-
mon to both FM and CM.

6. Results

First of all, apart from the nested grid experiments,
we tested the computational stability and accuracy of
this system of equations. With the coarse mesh, time

6" BOUNDARY SETTINGS:

) FIXED BOUNDRY VALUES
{2) NEUMANN CONDITIONS /
(3} DIRICHLET CONDITIONS @
(4] DIRICHLET, SMOOTHING /B
{5] WELL.POSED BOUNDARY TREATMENT 3

o
T

| memop Ho!
fm ;

—
P

ERROR AMPLIFICATIONS
F16. 4. Evolution of height differences.

5 We would like to use Set (5) also, but the computing machine
is no longer available.
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integrations were performed for 30 days both with the
explicit, leap-frog scheme (Af=35 min) and with the
semi-implicit scheme (Af=30 min). The calculations
were stable, and the conservation of kinetic energy and
enstrophy turned out to be excellent in both cases. In
addition, the two solutions for the explicit and the
semi-implicit schemes are quite close to each other as
shown in Fig. 3. This is perhaps the most surprising in
view of the fact that any two predictions always depart
from each other with just a slight difference in the
initial conditions—the “predictability decay.” In the
present calculations, not only the initial conditions but
also the governing equations are slightly different in
the sense of “explicit” versus “semi-implicit” schemes,
yet the two solutions at the 30th day are very similar
to each other. This suggests that a careful treatment of
the initial condition in the absence of barotropic in-
stability (baroclinic instability in the case of a baroclinic
model) can avoid the quick decay of the predictability
of solution. Since the success of a nested grid calculation
depends on the computational stability of the difference
scheme, the test mentioned above is important. The
closeness of the two solutions of the explicit and the
semi-implicit schemes in CM gives us the confidence
that it would be true also in the FM case. Therefore,
in the absence of an FM solution of the semi-implicit
scheme, we can use an FM solution of the explicit
scheme as the reference solution for the semi-implicit
scheme. This makes it possible to judge qualitatively
the nested grid results.

Let us next turn to the nested grid calculations. It
should be pointed out that if the semi-implicit scheme
is applied, the solution appears to be relatively smooth.
But if the explicit, leap-frog scheme is used, the resul-
tant solution included a large amount of wiggling due

RMS
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Development of LFM error -1
F16. 5a. Development of height difference in LFM. D is the

time in days and 7 is the index of LFM. Note that every other

point of I is skipped for the convenience of comparing with Fig. Sb,
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Fi16. 5b. Development of height difference in CM. D is the time
in Days and I is the index corresponding to the CM but counting
from the west boundary of the LFM rather than from the CM area.

to gravity waves, which are presumably caused by the
imbalance in the flow field inside as well as at the
boundaries. On the other hand, the solution of the
Euler-backward scheme is much smoother compared
with that of the leap-frog scheme. More important, the
accuracy in the Euler-backward scheme appears better
than the leap-frog scheme as measured by the rms error,
so far as the nested grid calculation is concerned. Here-
after, we will only present the results of the Euler-back-
ward version for the explicit scheme.

The five boundary settings for LFM calculations of
the explicit scheme discussed in the previous section

- were examined. Fig. 4 shows the time evolutions of the

root-mean-square difference (or error) of the geopoten-
tial height for each of LFM integrations from the refer-
ence solution (FM). It is interesting to note that with
Boundary Set (1), ie., the fixed boundary values,
computational instability did not occur until the 1.5th
day, but with Set (2), i.e., the Neumann conditions,
the calculation blew up before the 1st day. Boundary
Set (3) is an overspecification. The calculation con-
tinued until 3.5th day, then trouble started at the out-
flow boundary. The integrations with Sets (4) and (5),
i.e., LFM-4 and LFM-5, respectively, were most suc-
cessful and the calculations were still stable up to 8.3th
day calculated. To evaluate the advantage of the LFM
calculations over the CM ‘calculation, the difference of
the CM solution from the FM solution is also dis-
played. Overall, the LFM’s give better results than the
CM, in particular, with LFM-4 and LFM-5, the ad-
vantage of the nested grid method is significant up to
about 6.5th day but disappears after about 7.0th day.

Fig. 5a included the profile in the x direction (I is
the grid index) of rms of height difference averaged
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Fic. 6a. FM height field (the reference solution).

FM

over the width of five grids in y-direction, i.e., the 11th
through the 15th rows, of LFM-5 case. It is intended
to show how the error developed with time and invaded
the interior. At the beginning, say during the first 1 day,
the error remained near the boundaries, so that the
solution in the interior part of the limited domain was
very accurate. However, the error amplified and propa-
gated all over the domain as time went on. At the out-
flow boundary (on the right side of the figure), the
growth of error seemed more rapid. Fig. 5b is a similar
figure but for the CM. Since the boundary for the CM
is far away, the error in the limited region is mainly due
to the grid resolutions, not the boundary, so that the

™M

F16. 6b. CM height field.
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LFM-4 é

magnitude of the rms difference (error) is distributed
equally everywhere and grows at almost the same rate.

To provide a qualitative impression of the nested
grid results, the contour lines of geopotential height
field are shown in Figs. 6a~6d, where the results are all
for the 6.0th day. Fig. 6a is the reference solution (FM),
Fig. 6b, the CM, Fig. 6¢ the LFM-4 and Fig. 6d is the
LFM-5. In this particular example of flow pattern, the
solutions for both meshes of the large domain are not
much different ; the only difference is found in the phase
speed of waves, the sharpness of the troughs and the
amplitude of the system, in particular, the low near the
center. Consequently, the effect of the LFM does not
look striking in this particular example. Nevertheless,

Fic. 6¢c. LFM-4 height field.

587.5

LFM-5

Fic. 6d. LFM-5 height field.
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the important point is the improved accuracy, es-
pecially that of the level of the low, in the LFM over
the CM. It is hoped that a greater advantage (in
quality, not in the length of time before the nested
grid loses its advantage) will be achieved in the baro-
clinic case.

When the semi-implicit scheme with Boundary Set
(4) was applied to the limited area fine mesh grid, it
was found that the integration was stable until the
5.2th day. The quality of the solution with this scheme
in regard to gravity waves is better than that with the
leap-frog method, but is worse than that with the Euler-
backward method of the explicit scheme. The semi-
implicit scheme has one very attractive merit. The
speed of integration is about four times faster than the
leap-frog method for the usual problem (i.e., the non-
nested grid problem), and is about eight times faster
than the Euler-backward method of the explicit scheme.
For the nested grid calculation, this advantage is even
greater. In the relaxation process of solving the Helm-
holtz equation in the semi-implicit scheme, the height
field obtained in the CM is used as the initial guess, the
result is that the speed is increased to about eleven
times compared with that of the explicit Euler-back-
ward scheme.

In summary, the following points are concluded. The
tests conducted using boundary conditions Sets (4) and-
(5) gave satisfactory results. Set (5) is a well-posed set
of boundary conditions and no empirical treatment was
used to avoid computational trouble. However, it is
simpler to apply the Set (4) conditions than it is to
apply those of Set (5). In this respect, Set (4) may be
preferred, especially in connection with a complicated
system of equations.

7. Conclusions

A new set of well-posed physical boundary conditions
—the specification of the normal velocity component
at all boundaries and the tangential component at the
inflow boundaries—is proposed for the barotropic
primitive equation. In order to apply boundary condi-
tions to a system of finite difference equations, it is
often the case that additional boundary conditions
should be specified. The present system of finite differ-
ence equations is no exception. These additional condi-
tions are provided by extrapolation of the values inside
the domain using the upwind method and the pseudo-
characteristic method. With this set of numerical
boundary conditions, i.e., Set (5), numerical calcula-
tions for the nested grid model were carried out success-
fully. The Dirichlet conditions with local boundary
smoothing, i.e., Set (4) proved almost as good as Set
(5) in the present experiments where the ratio of grid
jump is 2 to 1. The merit of Set (4) is that the boundary
setting is extremely simple and that it is not necessary
to know the detailed properties of the equations.

These tests revealed that the nested grid model gives
solutions that are better than that of the large area
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coarse mesh grid up to about 7.0 days and significantly
so up to 6.5 days in the explicit, Euler-backward scheme
case. In particular, for the first 1 day, the solution in
the interior part of the limited domain is very accurate.
The semi-implicit scheme is very advantageous in
speed for the nested grid model; it is about 11 times
faster than the explicit Euler-backward scheme. On the
other hand, the leap-frog explicit scheme is twice as
fast as the explicit Euler-backward scheme. However,
both schemes, the explicit leap-frog and the semi-im-
plicit, are inferior to the explicit Euler-backward scheme
in the quality of solution when the nested grid is used.
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APPENDIX
Pseudo-characteristic Method

In order to extrapolate the values inside a domain to
the boundary, an appropriate characteristic equation
is selected and the equation is approximated by a one-
sided difference equation. In the problem of a two-
dimensional flow, the characteristic, called the Monge
cone, consists of a family of characteristic generators
which travel in different directions. Therefore, this
cone is not suitable for the boundary extrapolation.

To overcome this difficulty we propose here to use
the projection of the Monge cone on the x—{ or y—!¢
plane, on which the extrapolation is performed. Let us
first take the x—¢ plane, i.e., the extrapolation on the
east or the west boundary. For this purpose, we use
equations (1A) and (1C). Considering these equations
as functions of # and ¢ and treating v and the deriva-
tives in y as parameters, we have virtually ‘“two-
dimensional” equations for which characteristics can
be obtained. Multiplying (1A) by 4 and adding the
resulting equations to (1C), we have

a a
(—-——l—m (uk a)——) (ptan)
oL ox
=da(fo—mvu,)+ (Bo+¢)um,
—mpu,—m*[ (Bo+¢)o/m], (P1)

where ®, is the mean geopotential and a=®,! is the
surface wave speed. Since the equations so obtained are -
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not really characteristics, we shall call them “pseudo-
characteristics.” The third term on the right hand side
is much smaller than m®, or ma(atu)u, so that it
does not have any significant effect on the direction of
characteristics. Therefore it is moved to the right hand
side. Since we are dealing with large scale motions, a is
larger than u, therefore (u==a) have both signs. Conse-
quently, one of the characteristics travels upstream and
the other downstream. The effect of the domain of
dependence in y is kept implicitly in the terms on the
right hand side. The upwind or the backward-time
scheme (see Chen, 1973) can be used for these pseudo-
characteristics, so that the extrapolation of ¢ or # to
the east or west boundary is made with these methods.

Similar characteristics on y—¢ plane can be obtained
by using Egs. (1B) and (1C), considered as functions
of v and ¢ in y and ¢ coordinates.

[¢] 0
l:—-l—m (v a)—:l (pav)
ot ox

= Fa(futmuv,)+ (@o+¢)vm,
—mepvy, —m? ((I’o+¢)“/m:lz- (P2)

The upwind or the backward-time scheme (in y—i,
rather than x—¢, coordinates) is used to write one-sided
difference equations for obtaining ¢ or # at the north or
south boundary.
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